
0

Ignition Historian

Overview, Configuration, and Implementation Information

Last updated for Ignition 8.1.

Table of Contents

Overview 3

Modules 3
Tag Historian Module 4

Storage 4

Retrieval 4

SQL Bridge Module 4

OPC UA & Driver Modules 4

MQTT Transmission, Distributor, and Engine 5

Perspective / Vision Module 5

Reporting Module 5

Ignition Platform 5

Data Storage 6

Data Retrieval 7
Using Ignition’s visualization tools 7

For use with external tools 7

Architectures 8
Low Resilience Simple Architecture 8

High Performance Simple Architecture 8

High Performance Multi-Database Architecture 9

Data Collector Architecture 10

Benchmarking 10
Understanding the Benchmarks 11

Understanding Rates and Change Percents 11

REV 05-05-2021

1

How many tags can a single database handle? 11

SSD or HDD? 12

Internal Historian 12

Tag Changes Per Second 12

SQL Database Benchmarks 13

Test System 13

Storage Space Requirements 14

Throughput vs Network Quality 15

Scenario 1 15

Scenario 2 16

Optimization 16
General Optimizations 16

SQL Bridge 17

Tag Historian using SQL databases 17

High Throughputs 18

Reducing storage space requirements 18

Security 19
Security Hardening Guide 19

Encryption in-flight 19

Encryption at-rest 20

Client security 20

REV 05-05-2021

2

Overview
Ignition’s data historian functionality is a robust set of features that are built into Ignition modules,
providing data acquisition, storage, retrieval, and visualization.

As with everything else in Ignition, historian functionality is modular. Several modules are often
used together to provide a complete system. Often, users combine Ignition’s historian
functionality with SCADA, HMI, IIoT, or MES functionality.

Although many people think of Ignition’s Tag Historian Module as the “Ignition Historian,” a full
data historian often is described by not only storing tag data, but also storing event-based data
and providing visualization. As such, this document covers the modules for those features.

Modules

Diagram 1: One possible configuration of modules when Ignition is used as a data historian.

Ignition’s modular architecture allows for the choice between using a single module or using
multiple modules for a given installation. The bare minimum needed to use Ignition as a tag
historian is the Tag Historian Module. Many companies use more modules, especially if
event-based storage is needed or direct device communication will be used. The modules that
are used in a typical system are outlined below.

REV 05-05-2021

3

Tag Historian Module
This provides storage and retrieval of historical data through Ignition’s tag system. Incoming tag
changes can be piped to data storage, and tag history can be retrieved through the module.

Storage

Storage of data by the Tag Historian Module can go to several locations. Internal storage is
available to store small amounts of data within Ignition itself. SQL-based storage is the normal
recommendation for most systems, and pipes data through to an attached SQL database.
Additional storage engines are available from third-party developers, some of which can be
found on the Module Showcase. Regardless of the storage engine, the Tag Historian Module
offers tools for data storage rates, compression, deadbands, and a number of other features.

Retrieval

The Tag Historian Module can be used to retrieve history and perform calculations and
aggregations on historical data. Depending on the storage engine being used, the Tag Historian
Module will either perform the retrieval directly and perform any appropriate aggregates, or in the
case of using third-party storage engines, the Tag Historian Module will pass the request through
to the storage engine.

SQL Bridge Module
This module provides Transaction Groups, which are used for event-based logging. Data is
stored into SQL database tables, and options are provided for storing quality codes, timestamps,
auto creating configured tables, data rates, scheduling, and more.

OPC UA & Driver Modules
These modules provide data collection. The OPC UA Module acts as the foundation for Ignition’s
drivers, which offer native communication to a large number of devices. It should be noted that
Ignition can also connect to third-party OPC servers for data collection, either through the
platform for OPC UA connections, or through the OPC COM Module for OPC DA connections.

REV 05-05-2021

4

MQTT Transmission, Distributor, and Engine
These IIoT modules can be an integral part of data collection when using modern architectures.
MQTT Engine plugs right into Ignition’s Tag Historian Module to feed data through. It also
includes event storage through DRecords, which place data in database tables which create
records similar to Historical Transaction Groups.

Perspective / Vision Module
Sometimes visualization is part of a requirement for data historians. Perspective and Vision are
visualization systems that provide simple, easy-to-use screen building tools to create dashboards,
desktop applications, web pages, and on-screen reports.

Reporting Module
Although often not included in a data historian, the Reporting Module is worth mentioning, since
it allows for generation and automatic sends of PDF reports directly from within Ignition.

Ignition Platform
Although this isn’t a module, the platform itself is worth noting as it provides a number of
features. In addition to providing the required subsystems, like the tag system, the Ignition
Platform also provides scripting support to react and respond to tag changes in real time, and
includes an expression language that allows for tags that are based on equations or calculations.

REV 05-05-2021

5

Data Storage

Data storage of event-based data through SQL Bridge is stored in SQL databases. SQL Bridge
allows users to define table names and columns, and choose what to store and upon what
triggers. Historical Transaction Groups are a good choice for most event-based logging.
Data Storage of tag-based data through Tag Historian can go to several locations. Most users
target a SQL database. Other possibilities include a small internal storage system and third-party
storage engines, many of which can be found on the Module Showcase.

REV 05-05-2021

6

Data Retrieval

Using Ignition’s visualization tools

When using Perspective or Vision, Ignition provides a nice set of built-in tools for data retrieval.
For Tag History, this includes Tag History bindings, a data source type for the Reporting Module,
automatic integration with some charting components, and some drag-and-drop configuration in
the design tools. For event data that’s stored to a SQL database, Ignition has Named Queries
that allow for retrieval including support for conditions, date and quality limitations, and anything
else that SQL syntax allows.

For use with external tools
For event data, external tools can query the database directly, making everything accessible to
parties that have appropriate security permissions.

REV 05-05-2021

7

For tag historian data, it is recommended that external tools query data from Ignition’s APIs. This
is useful so any data retrieval goes through Ignition’s logic that provides interpolation,
aggregation, partition spanning, and any other logic needed for tag data retrieval. The API
function for retrieving this data is system.tag.queryTagHistory(), and setting up a REST endpoint
for that function is simple using the WebDev Module.

It should also be noted that Ignition’s automatically-created database tables are fully and publicly
documented for those users who do wish to directly query the tables instead of using the
recommended queryTagHistory() function.

Architectures
These architecture diagrams are based on Ignition running with the Tag Historian Module
targeting a SQL database. Note that architectures using different tag history storage could look
significantly different. (For example, the open source, free Azure ADX connector written by
Microsoft has very high throughputs and stores to the cloud, so no SQL database is used.)

If using a SQL database for storage, these architectures can provide a sense of possible
configurations. See the Benchmarks section below to get a sense of the possible throughputs for
different database technologies.

Low Resilience Simple Architecture

Server 1: Ignition
Server 2: SQL database

High Performance Simple Architecture

REV 05-05-2021

8

Server 1: Ignition
Server 2: Ignition with only Tag Historian Module, and SQL database installed on same server
Advantage: High speed Gateway Network communication between servers. Also weathers
communication difficulties, latency, and packet loss well.

High Performance Multi-Database Architecture

Server 1: Ignition
Servers 2 & 3: Ignition with only Tag Historian Module, and SQL database installed on same
server
Advantage: Allows scaling past single database throughput limits.

REV 05-05-2021

9

Data Collector Architecture

PLCs or other devices communicate with data collectors in the field. Those data collectors could
be Ignition, Ignition Edge, or systems that speak MQTT Sparkplug B natively. Additionally, some
devices speak MQTT Sparkplug B natively with history transfer and store & forward supported.
Those devices can often communicate directly without a separate collector.

Collectors are optional. Depending on the industry, they can make sense from a bandwidth,
network segmentation, and security standpoint.

Benchmarking

Event-based data and tag-based data both need to have appropriate hardware and software to
support the needs of the design. However, an appropriately designed system generally has
thousands of times more tag-based data than event data. As such, the benchmarks here are
focused on tag historian data and throughputs.

REV 05-05-2021

10

Understanding the Benchmarks
Benchmarks are based on throughputs. For example:

At a 10s rate, with 10% of tags changing

Understanding Rates and Change Percents
Note the rate and the tag change percent listed above. Ignition’s tag historian performance is
best rated in tag changes per second.

At a 10s rate, with 10% of tags changing, 100 tags produce 1 tag change per second.

Let’s say a database can handle 10,000 Tag Changes Per Second. This table outlines how many
tags that handles:

Example Database Tags

Storage Rate 10s 60s 1s 1s

Change Rate 10% 10% 10% 100%

Number of Tags 1 Million 6 Million 100 Thousand 10 Thousand

How many tags can a single database handle?
As you can see from the table above, that depends heavily on the Storage Rate and the Change
Rate of the tags. Ignition systems are configured by default to use 10s storage rates for tags.
However, some users want 1s rates or faster for some or all tags. Going to faster rates is
supported and encouraged as needed. Keep in mind, however, that faster rates will equate to
more changes per second going to the database.

REV 05-05-2021

11

SSD or HDD?
Inductive Automation highly recommends using an SSD both for the Ignition installation and for
the database storage if medium-low, medium, or high throughputs are expected. If only low
history throughputs are expected, an HDD may suffice. If choosing an HDD, testing the
database’s throughput would be recommended to ensure an HDD will handle the required
storage speeds.

Internal Historian
The internal historian is a disk-based historian, available directly inside Ignition. This can be a
great way to store a small amount of data at remote locations or locations where a SQL database
isn’t available.

The data is set to be limited by default to 1 week of data. Although that limit can be expanded,
Inductive Automation doesn’t recommend storing years of data in the internal historian, as the
internal historian is only intended for small amounts of local history. If you calculate out your
needed timeframe to log, your rates, and your change percent, we recommend keeping the total
records around 10 million rows. As the internal historian doesn’t have some of the advanced
features of the SQL Database storage like automatic partitioning, anything planned for storing
over 10 million records should use SQL Database storage or another storage engine.

Tag Changes Per Second
In order to provide benchmarks that are meaningful, these benchmarks are rated in Tag Changes
Per Second. Please estimate your Storage Rate and Change Rate, and multiply them together to
calculate your Tag Changes Per Second.

Tag Changes Per Second

Tag Count * Change Rate Percent / Storage Rate (in seconds)

Example: 100,000 Tags * 20% changing / 5 s storage rate = 100,000 * .2 / 5 = 4,000

Inductive Automation has a storage calculator spreadsheet available that can be provided upon
request to help with estimating.

REV 05-05-2021

12

SQL Database Benchmarks

Test System

Platform Windows
CPU Intel Core i7-4790K (4/8 core, 4GHz)
RAM 16GB
Drive Samsung SSD 860 EVO 2TB

Notes:
- These benchmarks are estimates only. Hardware differences and many other factors can

have a significant impact on throughputs.
- These estimates are based on steady state throughputs. Having reasonable Ignition Tag

Historian partition sizes configured will help to keep performance from degrading in most
databases. Timescale is the exception on this list, as it doesn’t experience degradation
over time.

- Oracle isn’t included on this list as Inductive Automation does not have an Oracle
enterprise license. The lightweight Oracle Express was tested and had similar
performance to MySQL, but it’s expected a full version of Oracle would have significantly
better performance.

REV 05-05-2021

13

These Initial Write benchmarks are included just for reference. Most databases have high
performance on initial throughput and that speed then drops until they reach a steady state. The
first image above captures that steady state. If you’re running your own tests and the initial
results are showing higher throughput, be sure to let the system run for a few hours or a few days
to let the rates even out.

Storage Space Requirements

Uncompressed, unoptimized storage requirements in SQL databases take around 100 bytes per
tag change, regardless of the database chosen.

Based on that number, it’s fairly easy to calculate storage requirements.

Storage space requirements

Tag changes per second * 100 * seconds in time period

For example, if you have 1,000 tags with 10% changing and at a 10s rate, you’re looking at 10 tag
changes per second. Multiply that by 100 bytes and 86,400 seconds in a day, and you get
around 86.4 MB per day.

REV 05-05-2021

14

Note that many databases have compression options, which can reduce the overall storage
required by 30-50% or more, generally at the cost of CPU / throughput. Timescale, specifically,
has an option that claims to reduce storage by up to 90% in certain circumstances. If storage
space is a main constraining factor, it may be worth exploring these options.

Throughput vs Network Quality

Network quality throughput testing was performed using Microsoft SQL Server. It is believed to
be a reasonable expectation that other databases follow similar performance characteristics
when it comes to network latency.

Scenario 1

Latency (Server 1 to Server 2)

0ms 1ms 5ms 10ms 20ms 50ms 100ms 150ms 200ms

Dropped
Packets

(Server 1
to

Server 2)

0% 30 19 17 15 12 9 6 4 3

2% 22 4 3 3 2 2 - - -

5% 10 1 1 1 1 - - - -

10% 1 - - - - - - - -

15% - - - - - - - - -

20% - - - - - - - - -

REV 05-05-2021

15

Scenario 2

Latency (Server 1 to Server 2)

0ms 1ms 5ms 10ms 20ms 50ms 100ms 150ms 200ms

Dropped
Packets

(Server 1
to

Server 2)

0% 30 30 30 30 30 30 30 26 20

2% 30 30 30 30 30 30 19 14 12

5% 30 30 30 30 30 19 11 9 7

10% 30 22 21 20 17 10 9 7 5

15% 20 14 13 12 11 7 6 5 3

20% 5 - - - 6 - - - -

All results are rated in thousands of tag changes per second.

As can be seen in the numbers, Ignition is much more resilient in Scenario 2, where a
performance degradation can’t even be seen until there are a significant percent of dropped
packets or over 100ms latency. This testing was performed with large numbers of tag changes at
a one-second rate.

Optimization

General Optimizations

These optimizations may apply to all systems.

REV 05-05-2021

16

SQL Bridge
● Configure data pruning on tables that don’t need to store history forever
● Ensure triggers are used to store events properly
● Don’t store data that’s not needed. If time series storage is needed, consider

using tag historian instead, and just logging events through Transaction Groups.
● When writing queries against the data stored by SQL Bridge, look at the WHERE

clause of the queries and create appropriate indexes in the database tables.
● Monitor the system for performance, to ensure you didn’t miss adding an index,

and to ensure database table size isn’t excessive for the project and the hardware
it’s running on.

Tag Historian using SQL databases
● Set reasonable deadbands for tags. Deadbands make sure that junk data isn’t

logged. If a sensor has an accuracy of 0.2, there’s no reason to ever log a change
of 0.02, since that change is just noise and is worthless. Setting reasonable
deadbands can save a significant amount of storage space and throughput from
logging noise.

● Set time deadbands (“Min Time Between Samples”) as it makes sense, so tags
don’t log faster than specific rates.

● Set tag rates appropriately. Only set tags to log at 1s rates if needed. Default to
slower rates unless requirements dictate otherwise.

● If it makes sense for your system, we recommend turning off Stale Data Detection.
If the system is running slower than it feels it should be, check the sqlth_sce table.
If there are more than a few hundred rows, you may have inadvertently
overloaded the system. Turning off the Stale Data Detection is normally a safe
thing to do (under the advanced properties in the database connection), but read
the user manual to make sure you understand the setting first. Turning that setting
off will keep the sqlth_sce table from growing if the system is experiencing
slowness.

● If using MySQL, add an extra connection parameter to the database connection.
This will increase throughput from around 1,000 tag changes per second to
around 10,000-20,000. rewriteBatchedStatements=true

● Ensure no other applications or services are running on the systems where
Ignition and the database(s) are hosted.

● Tune partitions to keep from exceeding 100m to 1b rows per partition. Keeping
partition sizes reasonable makes queries over short time frames faster, and helps
ensure dashboard charts and graphs render relatively quickly.

REV 05-05-2021

17

● Set up pre-processed partitions if querying over longer periods is expected. Note
that doing so will require some additional storage and processing, which will
impact the overall achievable storage throughput marginally.

High Throughputs
These optimizations apply if you have a system spec’d or in production where you are expecting
high throughput in terms of tag changes per second.

● Option 1 - Reduce throughput following the guidance above.
● Option 2 - Add another database/schema to the SQL database DBMS on the same

storage. Multiple databases can help split the load, and can increase throughput. Set
some tags to go to one database, and other tags to go to the other database.

● Option 3 - If throughputs still aren’t achievable, putting multiple databases on the same
DBMS, but pointed at different storage can also increase throughputs. Some databases
are heavily limited by drive IO, and splitting databases to different storage can have a
significant impact.

● Option 4 - Pointing Ignition at multiple database servers will ensure separate throughput
to each server, which effectively doubles the possible throughput that comes from a
single database server.

● Option 5 - Consider a distributed architecture. If there are multiple sites and a central
system, consider keeping site data at each site, and sending summary data to central.
Don’t worry; if you’re using the Gateway Network, you can always access site tag historian
data from the central system, treating all the connected Ignition gateways as a large
distributed system. Central reports, dashboards, and other visuals can stream data from
the sites to display it centrally, as long as the site is online.

● Option 6 - If very high throughputs are required, in the 500,000 to 1,000,000 tag changes
per second range for example, this may exceed what is practical with a set of SQL
databases. Other storage engines are available for Tag Historian from the Module
Showcase and other areas that have extremely high throughputs. These options may be
worth considering when very high throughputs are needed.

Reducing storage space requirements
● Database Compression (30-50%)

○ Many databases have options to compress data for tables.
● Full Drive Compression

○ Drive compression for storage drives can also provide benefits.

REV 05-05-2021

18

○ Not normally used together with Database Compression.
● If using Timescale

○ Timescale’s Chunking & Compression can provide even more significant savings.
Compression happens after a configurable time period. Drive space savings
happen after that period has elapsed and trigger the compression. Savings are
promoted as up to 90% or more. Inductive Automation has not run benchmarks,
so the exact savings against the Tag Historian table data is unknown at this time.

● Using other storage engines
○ Some storage engines have significant space savings.
○ Examples:

■ Influx from Module Showcase has smaller storage requirements per
record.

■ Azure ADX’s has very high throughput support and is supposed to have
efficient storage. Microsoft has released a free, open source module as a
connector, which can be found on github. The Azure ADX service is a paid
service from Microsoft.

○ Although Inductive Automation may provide guidance to module authors from
time to time, Inductive Automation does not support or endorse Module Showcase
modules. We encourage customers exploring these to contact the module
authors and explore any module documentation before making a decision to use
one of these modules.

Security

Security Hardening Guide
Inductive Automation has a strong focus on security and provides guidance on securing
individual Ignition Gateways. Inductive Automation recommends referring to the latest Security
Hardening Guidelines for the latest in securing an individual Ignition Gateway, which can be
found here: https://inductiveautomation.com/resources/article/ignition-security-hardening-guide

Encryption in-flight
Encryption in-flight can be an important consideration for any historical data. Ignition can run
over secured networks, and all data transfer can run over VPN or other encrypted tunnels that
support normal IP traffic. Additionally, Ignition client-to-server communication can be encrypted,
Gateway-to-Gateway communication can be encrypted, and Gateway-to-Database traffic can be
encrypted for all major databases. Some devices themselves don’t support encryption or other

REV 05-05-2021

19

https://inductiveautomation.com/resources/article/ignition-security-hardening-guide

security measures, so it’s important to consider how to secure that device communication.
Sometimes the solution is to put a small data collection device next to the insecure hardware,
running Ignition Edge or another piece of software, to keep unencrypted communication off of
any networks. Other solutions include VLAN encryption and securing networks for unencrypted
traffic using firewall rules, IDSs, and other security measures. Inductive Automation recommends
working with security experts if any questions arise on device communication security.

Encryption at-rest
Encryption at-rest can be accomplished by encrypting drives where data will be stored or
encrypting database tables if using a SQL database for data storage. These encryption tools will
be part of the database management tools. Encryption at-rest generally doesn’t require the drive
that Ignition is running on to be encrypted, since Ignition does not act as the main storage
medium. Depending on the traffic, performance, and settings in Ignition, there’s a chance that
cached data in the Store & Forward system could be temporarily written to disk from Ignition. If
this data is required to be encrypted at-rest, even while temporarily buffered to disk, then in that
case it would be appropriate to encrypt the drive Ignition runs on as well.

Client security
Client security is normally accomplished using TLS 1.2/1.3 encryption, which provides the same
level of encryption as a typical banking website. Standard PKI certificates are used, and the steps
for configuration are covered in the Ignition documentation. Refer to the Security Hardening
Guide above for guidance on enabling TLS in Ignition.

REV 05-05-2021

20

